John Lloyd

MEA582 Fall 2011

Final Project: GRASS and the python script v.transects.py
November 28, 2011

Table of Contents

INEFOAUCTION 1.ttt ettt et b e bt e bt e b e e bt e sb e e sbeesheesanesane eenbeesaeenneennes 3
Y] o] o Y- ol o P UPPRN 3
[ o)1 o T o[ ag Y=Y ) AT =1 (U] o T TR TP 3
GRASS 0N LiNUX BUilt frOmM SOUPCE.....c..eeiiiiieiie et 3
GRASS on Microsoft Windows built from SOUICE .......cccueiiiiiiiiiiiiieieeieeeee ettt 3
(0T oY a1 T o T=d o1V g o] o TR a1 ] £ SP 3
Vi d o Lo oI a1 o ARV au =Y FY ot £ 1Y USSRt 3
Testing Python V.tranSeCtS.PY SCHIPT ..uuiiiii i s e e e e s ee b e e e e e s e s abtaeeeeeesennnnnns 4
B 0111 g o T Lo [ .Y A SRR 4
=23 o o= ] =3 PP 4
RESUIES ettt ettt ettt s e e bt e sa bt e st e sttt e b b e e s abe e e b e e e s bt e e e a b e e s be e e hteesab e e eabe Shbeeeateesbeeenateesareenn 5
INStalling GRASS frOM SOUICE .....uviieiciiiie ettt ettt e et e e e et e e e e eata e e e sbtaeeesabaeeesastaeeesstaeeesnsaneenanes 5
LINUX ENVIFONMENT .covviiiiiiiiiiiiiiii et e s s e e saaeee s 5
Microsoft Windows ENVIFONMENT .....cccuiiiiiiiiiieieerteeteeste ettt sttt sttt ettt be b e b e nbeennees 6

[2XU 0] a1 T=q Vo VoY s Yol o T o 4PN 9
LINUX ENVIFONMENT ..ceiiiiiieiiiii ettt s a e e s s s e e e e e s s s errneeeeesens 9
Microsoft Windows ENVIFONMENT ......cooiiiiiiiiiiii ettt ettt sttt et sbe e b e saeeesabeesbee s 9
V.ErANSECES TEST CASES .oviiiiiiiiiiiiii ittt 9
Parameter Verification TESt SEE ...ttt st st st 10
Shoreline Dataset Verification TSt SET ......coviiiiiiieiieiiee ettt 11
Verify Polylines of Various Shapes TESt SEt ......uuiiiiiiiiiiiiiiieee ettt e e e e arrae e e e 11
WWGSBA TEST SOL ...ttt ettt ettt et sttt e sb e sttt s bt e e s bt e e sabeesabeesabbeesabeeaabeesabaesnbeesaseenane nene 12
TOST EXECULION ettt ettt e e e e e e e e e e e e e e e e e e e e e e e s e e e sesasasasasasssasassssnsnsnsnnn senennnnns 13
Phase 1- Run Original SCript iN LINUX ....ceeiiciieeiiiiie sttt stee e sevee e e e satee e e saae e e e sabaee s entaeaennnes 14
Phase 2 - Run Script with fixes applied in WiNOWS .........ccuiiiiiiiiii it tre e 16
Phase 3 - Run Script with fixes applied in LINUX........ccoceiiiiiie e 18



(DT EYol8 £ (o] o IO 19

GRASS FrOM SOUICE ...ttt ettt b et e st e e s bt e s bt e s aeesaeeeaeeeme e e ae e et e eateebe e beeabeebeenben oo 19
V.ArANSECE TEST RESUIES ..eeeiieeee e e s s 19
CONCIUSIONS ...ttt ettt e et be e e st e s bt e e b et e s se e e sabeeebe e e s ae e e amseesabeesneeesaseesmseesabee neeesaneesaneeanns 20
Ay oY o T=] o Lo [ PSRRIt 20
GRASS Start SCript fOr WINGOWS ......uiiiiiiiiei sttt s e e e sbee e e s ate e e e sbeee e s sareeeesneeas 20
TSt CaSE COMMANGS ..cuvieuiietieiee ettt ettt sttt ettt et ettt et e e bt e b e e bt e b e e s beesbeesmeesmeesanesanesanesanes 20
Parameter Verification Test Cases COMMANGS ......cccueerieereerierienienie sttt ettt sbeesbe e b e sreesree s 20
Shoreline Dataset Test Cases COMMANGS ....c.cuuiiruierreerteeeiteeesteesreeereeesreeesbeesreeesbeeesneeesreeesneeesnneas 21
Verify Polylines of Various Shapes Test Cases COMMAaNS .......cocccviiieieeeeiiiiiiieeee e eeccrieeee e e e envreeeeas 21
WGS Dataset Test Cases COMMANDS .....cciviiriiiiiiieiiierieeerite et et et e et eesbeesbeeebeeessbeesabeessneeenaeeas 22
Save Resulting Transects to ASCII Files COMMAaNAS .......cccueeiiiiiieiiiiiee et e e e 22
TEST CASE RESUIES .. .eeuteeiietiee ettt sttt ettt et e s bt e sbe e sme e smeesmeeeaeeen s emees 23
Parameter Verification Test Cases RESUILS .......cocuiiiiieiiiiieiieieesi ettt 23
Shoreline Dataset Test Cases RESUILS.....cccuiiiiiiiiiieiieee e 24
Verify Polylines of Various Shapes Test Cases RESUILS.......cciiiiciiiiiieie e 26
WGS Dataset Test Cases RESUILS ......ccouiiiiiiiiii ittt ettt st s e e s 29

R - TR =To £ o) A Yol T o | OSSOSO PRPPPPPPPPPP 30
(0] 0o Y AT o T Yol 1o S PRSP 30

1Y T T o - = PSPPI 30
g T | BTl ] o) SRS 32



Introduction
In this project | setup two GRASS environments and tested a user developed python script in both
environments comparing the results.

| setup both Microsoft Windows and Linux environments for GRASS development and test. | built these
environments from GRASS source code. By building from source code | was able to use the latest
versions of the GRASS application.

| then used my environments to test and debug the python script. A researcher in shore dynamics
provided the python script. The script partitions the shore by creating line segments perpendicular to
the shoreline called transects.

Approach
The approach | took in this project was to setup my development and testing environments, run a
generic python scripts in the environments, and then test the provided script.

Environment setup

GRASS on Linux built from source

| built my GRASS Linux environment on CentOS Linux 5.7. CentOS Linux is a free distribution of an
enterprise class operating system based on sources available from a “prominent North American
Enterprise Linux vendor” (http://www.centos.org/). It is thought to be equivalent to Red Hat Enterprise

Linux, although this is not explicitly stated.

| downloaded the additional packages specified on the GRASS Wiki and then the GRASS source code. |
chose the source for GRASS version 6.4.2RC. After | all downloads completed, | compiled and installed
GRASS using the steps on the GRASS Wiki.

GRASS on Microsoft Windows built from source

In addition to building a GRASS environment on Linux, | built a GRASS environment on Microsoft
Windows7 Professional. | downloaded the source for GRASS 6.4.2RC and followed the instructions on
the GRASS Wiki to compile the source in a Minimalist GNU for Windows (MinGW) build environment. |
downloaded the required packages using the 0SGeo4W installer. 0SGeo4W installs open source
geospatial software on Windows.

Running python scripts
After | setup the Linux and Windows environments, | ran python scripts via GRASS in text mode.

Python script vtransects.py
After setting up the environment and verifying that | could run python scripts, | tested the python script
vtransects.py provided by Eric Hardin (http://www4.ncsu.edu/~ejhardi2/vTransect.html). The paper

Measuring short-term geomorphologic evolution in the Outer Banks of North Carolina by Helena
Mitasova and Eric Hardin contains the background for the script. In the paper they use the script to



partition the shoreline along the Outer Banks. The script creates edges of rectangles perpendicular to
the shoreline and extending for a distance given in the script's parameters and separated by a distance
given in another script parameter. The user has the option of creating a line vector layer representing
the edges of the rectangles perpendicular to the shoreline or creating area polygons by adding the edges
roughly parallel to the shore.

However, researchers may use this script for purposes other than shoreline partitioning. The script
accepts any line feature as input, so the script could partition for example a stream or road network into
segments.

Testing python v.transects.py script

Test methodology

| tested the provided script in both Linux and Windows environments. | first executed my test cases in
my Linux environment using the script as provided to me. My assumption was the provider of the script
had already tested the script in a Mac OS environment and, since Mac OS and Linux are both UNIX like
environments, | expected to find fewer issues in Linux than Windows. Any issues that | did find |
recorded and when possible applied fixes.

Next, | executed the same test cases in my Windows environment. Any additional problems | found in
this environment | fixed when possible. | then exported the transect line and area vector layers to ASCII
format for both the Linux and Windows outputs and used a difference tool to verify both environments
produced the same output layers.

| returned to the Linux environment for the final phase to verify that modifications made while testing in
Windows did not introduce new defects.

Test cases

| created four groups of test cases; a parameter validation group, a Nags Head data group, additional
line layers group, and a group in the WGS84 coordinate system. The parameter validation group simply
verified that the script correctly handled invalid inputs. The Nags Head data group tested a range of
parameter inputs using the shoreline data matching the scripts intended purpose. The additional line
layers group tested the script with various shapes of polylines not representative of shorelines. The
inputs in these test cases were all NC State Plane Meters. The WGS84 group tested a subset of the lines
re-projected into WGS84.



Results

Installing GRASS from Source
Linux Environment

CentOS Install

| built GRASS in my CentOS Linux 5.7 environment. Before | built GRASS | had to prepare the
environment by installing various packages. When | did the CentOS install | selected the “Development
Libraries”, “Development Tools” and “X Software Development” groups of packages (Figure 1 CentOS
Install Package Groups). If these were not selected at install then | would have had to install them later
using the “yum” tool (ex. Yum groupinstall “X Software Development”).

Figure 1 CentOS Install Package Groups

GRASS Compile
| followed the steps outlined on the GRASS Wiki (http://grass.osgeo.org/wiki/Compile _and Install) to

download the prerequisite packages, download the GRASS source, and build and install the GRASS
source.

| downloaded the source and built the libraries for the following packages in my environment. The
standard procedure for building the libraries is to uncompress the downloaded file, run “./configure”,
“make”, and “make install” as the “root” user.

e tiff-3.9.5.tar.gz — provides support for the TIFF image format and is available at
http://www.remotesensing.org/libtiff/

e proj-4.7.0.tar.gz — a cartographic projections library available at http://trac.osgeo.org/proj/

e gdal-1.8.1.tar.gz - a translation library for raster geospatial formats available at
http://www.gdal.org/

| installed additional prebuilt libraries using the standard Linux “yum install” method. These libraries are
listed below.



e tcl-devel — development files and man pages for Tool Command Language (TCL)

e tk-devel — header files and documentation for writing Tk extensions in C, C++, etc.
o fftw-devel —a C subroutine library for Discrete Fourier Transforms

e python-ctypes —a python module to handle C data types

e numpy — a scientific computing package for python

The final step in setting up the Linux environment was to download the GRASS source and build it.
Various version of the source are available on the GRASS Download site
(http://grass.osgeo.org/download/software.php). | chose the GRASS 6.4.2RC source snapshot of 2011-
10-08. Then, | followed the standard Linux procedure to build by executing “./configure”, “make”, and
“make install” as the “root” user (Figure 2 GRASS ./configure output and Figure 3 GRASS make output).

After building GRASS the Linux shell command below started the GRASS application.
e /usr/local/bin/grass64

Figure 2 GRASS ./configure output Figure 3 GRASS make output

Microsoft Windows Environment

Just as | built GRASS from source in my Linux environment, | built GRASS from source in my Windows7
environment. | followed the steps outlined on the GRASS Wiki
(http://trac.osgeo.org/grass/wiki/CompileOnWindows) using the 0SGeo4W installer
(http://trac.osgeo.org/osgeodw/). 0SGeodW distributes binaries of open source geospatial software for
Windows. The OSGeo4W installer will create a “MSYS” command interpreter
(http://www.mingw.org/wiki/MSYS). MSYS facilitates building applications that rely on GNU utilities.
After setting up the “MSYS” environment | installed additional tools from the “Minimalist GNU for
Windows” (MinGW) site (http://www.mingw.org/).




0SGeo4W

| chose the packages in Table 1 0SGeo4W Packages on the OSGeo4W Select Package screen (Figure 4

0SGeo4W Package Selection).

Table 1 0SGeo4W Packages

Desktop

GRASS 6.4-
dev

Commandline_Utilities

gpsbabel ‘ gdal ‘ proj

Libs

fftw-devel freetype- freetype- gsl-libs

devel devel

gsl-devel libpng-devel | libpng-devel- | libtiff-devel
mingw

libxdr libxmI2 pdcurses- tcltk-devel
devel

zlib-devel gdal-ecw gdal-mrsid libtiff

(4.0.0dev-90)

Figure 4 0SGeo4W Package
Selection

Minimalist GNU for Windows (MinGW)

The OSGeo4W installer created an icon for the MSYS command interpreter (Figure 5 MSYS Desktop
Icon). In the MSYS command interpreter | installed additional packages for the MinGW environment. |

first edited c:\osgeo4w\apps\msys\etc\fstab to make the Windows directory c:\osgeo4w accessible
from the MSYS command interpreter (Figure 6 MSYS Environment fstab File). Table 2 MinGW Packages
contains a list of the packages. The GRASS Compile on Windows Wiki page contains the download links. |

uncompressed the packages as shown in Figure 7 Uncompressing MinGW Packages and Figure 8

Uncompressing MinGW Make Package.

A

Figure 5 MISYS Desktop Icon

Figure 6 MSYS Environment fstab File




Table 2 MinGW Packages

msysCORE-1.0.11-bin | bin-utils gce-core
gece-g++ mingw32-make | mingw-runtime
mingw-utils w32api make

Figure 7 Uncompressing MinGW Packages

Figure 8 Uncompressing MinGW Make Package

Pre-Built Binaries
After restarting MSYS | downloaded and uncompressed the pre-built binaries in Table 3 Pre-Built
Binaries to c:\osgeod4w. The GRASS Wiki Compile on Windows page contains the download links.

Table 3 Pre-Built Binaries

bison bison-deps flex gettext-bin
gettext-lib libiconv-lib libintl-bin libintl-lib
regex bc readline

Compiling GRASS
| downloaded the same GRASS source that | used in my Linux environment, GRASS 6.4.2RC source
shapshot of 2011-10-08. | uncompressed it into the directory c:\OSGeo4W\usr\src. Running the
command below from the MSYS command interpreter in the source directory will build GRASS.

e ./mswindows/osgeo4w/package.sh

Running GRASS
After compiling | could run GRASS from the MSYS command interpreter using the command below.

e /osgeodw/bin/grass64

| could also run GRASS from a DOS command prompt using the following command. | modified this
command to set environment variables needed later. This is the method | used to start GRASS through
the remainder of the project.

o :\OSGeo4W\bin\grass64.bat




Running Python Scripts

Linux Environment
| ran the python script in my CentOS Linux 5.7 environment by starting a Linux shell and entering the

commands below.

e "grass64 —text" (set the location, mapset and database as in Figure 9 Setting Location, Mapset,
and Database)

e cd <directory containing python script>

e python <script name>.py <parameters>

Figure 9 Setting Location, Mapset, and Database

Microsoft Windows Environment
From a command prompt in Windows | ran a python script by following the steps below.

e "\OSGeo4W\bin\grass64.bat —text" (set the location, mapset, and database)
e cd <directory containing python script>
e python <script name>.py <parameters>

v.transects Test Cases

This section lists the test cases run in the two environments. There are four sets of test cases. The first
set verifies that the script handles incorrect parameters. The second set verifies that the script works on
shoreline data. The third set verifies that the script handles polylines of various shapes. The datasets in
the first three test case sets are all in NC State Plane Meters. The last set verifies that the script works
with data not in State Plane but in WGS84.

The tables in each section contain a column describing the purpose of the test, the values of the five
parameters to the script, and a column indicating the final result after the test had been executed in all
environments. | executed the tests following the process detailed in the Test Execution section below.



Parameter Verification Test Set
This group of tests verifies that the script detects and correctly handles incorrect parameter inputs.

The parameters to the script are

e input - the name of a line vector layer

e output - the name a line or polygon vector layer

e transect_spacing - a floating point number in the units of the projection representing the

distance between transects

o dleft - a floating point number in the units of the projection representing the distance the

transect extends on the left side of the line

e dright - a floating point number in the units of the projection representing the distance the

transect extends on the right side of the line

e type - line or area specifying the type of layer created

Table 4 Parameter Tests

Parameters
# | Description Input Output Transect | Dleft | Dright | Type Pass/fail
_spacing
1 | Input parameter required NH_2008 | 50 Pass - displays
transcect error message
2 | Output parameter required | NH_2008 1m 50 Pass - displays
error message
3 | Transect_spacing NH_2008 1m | NH_2008 Pass - displays
parameter required transect error message
4 | Transect parameter NH_2008_1m | NH_2008_ | Xxx Fail — pass after
number transect update to display
error message
5 | Dleft parameter number NH 2008 1m | NH_2008 | 50 XXX Fail — pass after
transect update to display
error message
6 | Dright parameter number NH_2008_1m | NH_2008_ | 50 XXX Fail — pass after
transect update to display
error message
7 | Input does not exist XXX NH_2008_ | 50 Pass - displays
transect error message
8 | Output exists NH_2008_1m | NH_2008_ | 50 Pass - displays
transect error message
9 | Invalid Option - Pass - displays
error message
10 | Invalid Type Option NH_2008_1m | NH_2008_ | 50 XXX Pass - displays
transect error message

10




Shoreline Dataset Verification Test Set

This group of test verifies that the script performs its designed purpose of creating transects along lines

representing the shoreline. The dataset is in NC State Plane Meters.

Table 5 Shoreline Dataset Tests

Parameters
Description Input Output Transect | Dleft | Dright | Type Pass/fail
_spacing
Parameters used in NH_2008_1m | NH_2008_ | 50 Pass
paper transcectl
Large transect spacing NH_2008_1m | NH_2008_ | 500 Pass
transcect2
Zero transect spacing NH_2008_1m | NH_2008_ | O Fail — pass after
transcect3 update to display
error message
One meter transect NH_2008 1m | NH_2008 |1 Pass
spacing transcect4
Left/right transect NH_2008_1m | NH_2008_ | 50 25 100 Pass
spacing different transcect5
Zero transect spacingon | NH_2008_1m | NH_2008_ | 50 0 Pass
left transcect6
Zero transect spacingon | NH_2008_1m | NH_2008_ | 50 0 Pass
right transcect?
Parameters used in NH_2008_1m | NH_2008_ | 50 area Pass
paper with area transcect8
Parameters used in NH_2008_1m | NH_2008_ | 50 line Pass
paper with line transcect9

Verify Polylines of Various Shapes Test Set
This group of test verifies that the script works correctly with polyline features in shapes unlike those of

a shoreline. | created the layers used in this test set with the ArcMap Edit Tool as shapefiles and then
imported them into GRASS. The datasets are all in NC State Plane Meters.

Table 6 Various Shapes Tests

Parameters
Description Input Output Transect | Dleft Dright | Type | Pass/fail
_spacing
No lines in input nolines nolines_tr | 50 Fail — pass after
ansects added error
message
Multiple lines in input multLines multLines_ | 50 Pass
transects
Circle in input circle circle_trans | 50 Pass
ects
Right angle in input rightAngle rightAngle_ | 50 Pass

11




transects

5 Intersecting lines in interLines interLines_ | 50 Pass
input transects
6 | Network of Lines streets_wake | Streets_wa | 50 Fail — but passed
(streets) ke_transec with updates in
ts Linux only
7 | Super long line superLong superLong_ | 50 Pass
transects
8 | Freehand freeHand freeHand_t | 50 Pass
ransects
9 | Points Points Points_tran | 50 Pass - displays
sects error message
10 | Raster Raster Raster_tra | 50 Pass - display
nsects error message
11 | Multiple lines in input multLines multLines_ | 50 Area | Pass
with area area
12 | Multiple lines in input multLines multLines_| | 50 Line | Pass
with line ine

WGS84 Test Set

The datasets in the previous tests all used the NC State Plane Meters projection. To determine whether
the script worked with other projections, | re-projected some of the polyline shapefiles | created in
ArcMap to WGS84 using the ArcMap tool (Figure 10 Re-projecting Dataset to WGS84). | then imported
the re-projected datasets into GRASS after creating a “Location” using the WGS84 projection (Figure 11
Creating WGS84 Location).

There may not be a requirement for the script to handle datasets in the WGS84 projection. It is also

unclear what the units for the transect_spacing, dleft, and dright parameters would be, although most

likely they will be in degrees with the current implementation. However, specifying spacing in degrees is

not convenient.

12




Figure 10 Re-projecting Dataset to WGS84

Table 7 WGS84 Projection Tests

Figure 11 Creating WGS84 Location

Parameters
# | Description Input Output Transect | Dleft Dright | Type Pass/fail
_spacing
1 | Multiple lines in input multLinesWGS | multLines 50 Fail
WGS_trans
ects
2 | Freehand freeHandWGS | freeHandW | 50 Fail
GS_transec
ts
3 | Multiple lines in input multLinesWGS | multLines 0.01 Pass
.01 WGSO01_tra
nsects

Test Execution

| tested the script in three phases. The first phase tested the script as provided to me in my CentOS Linux

5.7 environment. | expected the script to work in this environment as it had already been used in

another UNIX based operating system, Mac OS. If | did encounter defects | fixed them when possible. |
also saved all the transect layers created by exporting them to ASCII. Exporting to ASCII allowed me to

use a difference tool in later phases to detect any variations in the outputs.

The second phase tested the script in my Windows7 environment. | ran the same test cases as in phase
one and fixed any defects when possible. As in the first phase | saved the transect layers created by
exporting them to ASCII. Then, at the conclusion of the phase | used the difference tool in the SlickEdit

13




(http://www.slickedit.com) development product to compare the layers created. The tool allowed me to

spot differences not visible in map documents.

The third phase repeated the tests again in the CentOS Linux environment to verify that changes made

did not introduce defects. As in the other phases | used the difference tool to compare layers.

Phase 1- Run Original Script in Linux

In this phase | ran the script as provided against test cases in my CentOS Linux 5.7 environment. The test

cases listed below failed.

Parameter Verification Failed Test Cases

Test case 4 - Verify Correct Handling of Invalid transect_spacing Parameter:

Attempting to do floating point operations on a stri

ng literal caused a run-time error. The fix to the

script detected the string literal and exited gracefully.

Output Before fix applied

Output After fix applied

GRASS 6.4.2svn (nc_spm_08):~/Desktop/Project/Script >
python v.transects.py input=NH_2008 1m
output=NH_2008_transects transect_spacing=xxx
Traceback (most recent call last):

File "v.transects.py", line 234, in ?
main()
File "v._transects.py", line 198, in main

transect_spacing =
Ffloat(options[“transect_spacing”])
ValueError: invalid literal for float(): xxx

GRASS 6.4.2svn (nc_spm_08):~/Desktop/Project/Script >
python v.transects.py input=NH_2008 1m
output=NH_2008_transects transect_spacing=xxx

ERROR: Invalid transect_spacing value.

Test case 5 - Verify Correct Handling of Invalid dleft Parameter:
This test case caused a failure similar to the previous test case and a similar fix was applied to the script.

Output Before fix applied

Output After fix applied

GRASS 6.4.2svn (nc_spm_08):~/Desktop/Project/Script >
python v.transects.py input=NH_2008 1m
output=NH_2008_transects transect_spacing=52
dleft=xxx
xxx 52.0
Traceback (most recent call last):
File "v.transects.py", line 234,
main()
File "v.transects.py",
dleft = float(dleft)
ValueError: invalid literal for float(): xxx

in ?

line 206, in main

GRASS 6.4.2svn (nc_spm_08):~/Desktop/Project/Script >
python v.transects.py input=NH_2008_1m
output=NH_2008_transects transect_spacing=52
dleft=xxx

xxx 52.0

ERROR: Invalid dleft value.

Test case 6 - Verify Correct Handling of dright Parameter:
This is another example of run-time error due to floating point operations on a string literal.

Output Before fix applied

Output After fix applied

GRASS 6.4.2svn (nc_spm_08):~/Desktop/Project/Script >
python v.transects.py input=NH_2008_1m
output=NH_2008_ transects transect_spacing=52
dright=xxx

52.0
Traceback (most recent call last):

File "v._.transects.py', line 234, ?

in

GRASS 6.4.2svn (nc_spm_08):~/Desktop/Project/Script >
python v.transects.py input=NH_2008_ 1m
output=NH_2008_transects transect_spacing=52

dright=xxx
52.0
ERROR: Invalid dright value.

14




main()
File "v.transects.py"”, line 210,
dright = float(dright)
ValueError: invalid literal for float(): xxx

in main

Shoreline Dataset Failed Test Cases

Test Case 3 - Verify Correct Handling of zero transect_spacing
When | set the transect_spacing parameter to zero, | had to use a keyboard interrupt (CTRL-C) to stop

the script. The transect spacing value of zero caused the script to enter a loop with no exit or infinite

loop. | applied a fix to the script that made zero an invalid transect spacing value.

Output Before fix applied

Output After fix applied

GRASS 6.4.2svn
(nc_spm_08) :~/Desktop/Project/Script/Orig > python
v.transects.py input=NH_2008_1m
output=NH_2008_transects3 transect_spacing=0
0.0
Traceback (most recent call last):
File "v.transects.py"”, line 220,
main()
File "v._transects.py", line 212, in main
transect_ends = getTransects( v, dleft, dright,
transect_spacing )
File "v._transects.py", line 117, in getTransects
transect_locs[-1].append( (r*array( line[j] ) +
(1-r)*array( line[j-1] ))-.tolist() )
KeyboardInterrupt

in ?

GRASS 6.4.2svn (nc_spm_08):~/Desktop/Project/Script >
python v.transects.py input=NH_2008_ 1m
output=NH_2008_ transects3 transect_spacing=0

ERROR: Zero invalid transect_spacing value.

Verify Polylines of Various Shapes Failed Test Cases

Test Case 6 - Verify Correct Handling of a Network of Lines
When | ran the script with the input layer set to a network of streets, the result was a run-time error

writing the result.

Output Before fix applied

Output After fix applied

GRASS 6.4.2svn (nc_spm_08):~/Desktop/Project/Script/Orig > python v.transects.py
input=streets_wake output=streets_wake_transects transect_spacing=50

50.0

Building topology for vector map <streets_wake_transects>...

Registering primitives...
197302 primitives registered
394604 vertices registered
Building areas...

100%

0 areas built

0 isles built
Attaching islands...
Attaching centroids...

100%
Number
Number
Number
Number
Number
Number

of
of
of
of
of
of

nodes: 394604

primitives: 197302

points: 0O

lines: 197302

boundaries: 0

centroids: 0O

Number of areas: O

Number of isles: 0O

WARNING: Unable to write lines to plus file
WARNING: Error writing out topo file
WARNING: Error writing out category index file

No fix applied

15




WGS Dataset Failed Test Cases

Test Case 1 - Verify Handling of Multiple Lines in WGS84

When using a layer in the WGS84 projection, the script exited but no features were created.

Output Before fix applied

Output After fix applied

GRASS 6.4.2svn (WGS):~/Desktop/Project/Script/Orig > python v.transects.py
input=multLinesWGS output=multLinesWGS_transects transect_spacing=50
50.0

Building topology for vector map <multLinesWGS_transects>. ..
Registering primitives...

0 primitives registered

0 vertices registered

Building areas...

0 areas built

0 isles built

Attaching islands. ..

Attaching centroids. ..

Number of nodes: 0O

Number of primitives: 0

Number of points: 0

Number of lines: O

Number of boundaries: 0

Number of centroids: O

Number of areas: 0O

Number of isles: O

v.in.ascii complete.

No fix applied

Test Case 2 - Verify Handling of Free Hand Line in WGS84
No features were created.

Output Before fix applied

Output After fix applied

GRASS 6.4.2svn (WGS):~/Desktop/Project/Script/Orig > python v.transects.py
input=freeHandWGS output=freeHandWGS_transects transect_spacing=50
50.0

Building topology for vector map <freeHandWGS_transects>...
Registering primitives...

0 primitives registered

0 vertices registered

Building areas...

0 areas built

0 isles built

Attaching islands. ..

Attaching centroids. ..

Number of nodes: 0

Number of primitives: 0

Number of points: 0

Number of lines: O

Number of boundaries: 0

Number of centroids: O

Number of areas: 0O

Number of isles: O

v.in.ascii complete.

No fix applied

Phase 2 - Run Script with fixes applied in Windows

In the second phase of my testing | reran the test cases in my Microsoft Window7 environment using

the script provided and any fixes applied in the first phase.

Before | could execute the test cases in my Windows environment, | had to fix two run-time errors. The

first error was caused by parameters to the python function popen() that are not supported on

16




Windows (http://docs.python.org/library/subprocess.

html). The second error was caused by re-opening

a named temporary file, which is also not supported on Windows with the system call used in the

original script (http://docs.python.org/library/tempfile.html).

The test cases listed below failed.

Error Messages Caused by Popen

Error Messages Caused by NamedTemporaryFile

GRASS 6.4.2svn (nc_spm_08)> python v.transects.py
input=NH_2008_1m output=N
H_2008_transectsl transect_spacing=50
50.0
Traceback (most recent call last):
File "v._transects.orig.py", line 220,
<module>
main()
File "v.transects.orig.py",
v loadVector( vector )
File "v_.transects.orig.py",
loadVector
p = Popen(expVecCmmd, shell=True, stdin=PIPE,
stdout=PIPE, stderr=STDOUT, cl
ose_Tds=True)

in

line 211, in main

line 70, in

File
"'C:\0SGeo4W\apps\Python25\1ib\subprocess.py",
line 552, in __init

raise ValueError(*“'close_fds is not supported
on Windows **
ValueError: close_fds is not supported on Windows
platforms

GRASS 6.4.2svn (nc_spm_08)> python
v.transects.orig.py input=NH_2008_1m output=N
H_2008_transectsl transect_spacing=50

50.0

ERROR: Unable to open ASCII file

Verify Polylines of Various Shapes Failed Test Cases

Test Case 6 - Verify Correct Handling of a Network

of Lines

When | ran the script with an input dataset of a layer containing a network of streets, the script failed to

terminate after two hours of execution. This is the sig

WGS Dataset Failed Test Cases

n of an infinite loop.

The results of the test cases in this group were the same as running in the Linux environment. The script
did not create any transects in the first two test cases.

Automate Diff ASCII versions of Windows and Linux

| exported the transect layers created by the test cases to ASCII format and then used a text difference
tool to compare the ASCII versions produced in the Linux environment with those produced in the
Windows environment. Every layer contained differences in the header information (Figure 12
Differences in Header Info). There were also differences in the values for coordinates of 0.000001m
(Figure 13 Differences in Coordinates). Neither difference was significant.

17



Figure 12 Differences in Header Info

Figure 13 Differences in Coordinates

Phase 3 - Run Script with fixes applied in Linux

| re-ran the script in Linux. This final phase verified that the changes made to accommodate Windows
did not introduce defects in the Linux environment. | did not discover any new defects in this phase.
However, the test case using a network of streets for the input dataset produced correct output in this
phase when it failed in the other phases (Figure 14 Network of Lines Test Case 6 in Linux).

Figure 14 Network of Lines Test Case 6 in Linux

18



Discussion

GRASS from Source

Installing GRASS from source code rather than using the pre-built binaries can be tedious. If the
prerequisite packages were not included during the Linux installation then missing packages must be
identified, downloaded, and installed before building GRASS. The easiest method for identifying missing
packages is by running the GRASS configure script included with the source. Identified packages can
then be downloaded and installed with a Linux tool such as "yum".

Another problem installing from source is setting the environment variables. This was particularly an
issue in the Windows environment. When using the prebuilt binaries the installer sets the variables and
registry settings. However when installing from source, | had to determine the required variables and
then modify the GRASS start script to set them to the correct values.

While installing GRASS from source can be tedious, there are several advantages. When installing from
source the developer is not restricted to the levels of the pre-built binaries for his environment. This
makes it possible to use the latest updates and fixes. Using source also helps understand the algorithms
implemented. If a result looks incorrect the developer can review the source to verify that the algorithm
is as expected. If the algorithm is not as expected or not appropriate for the current application then the
developer can modify the source to suit. Finally, using the source code the developer can debug defects
in the tools.

v.transect Test Results

The script as provided did minimal parameter checking. It was able to detect missing parameters and
unused extraneous parameters. | added code to handle the wrong type of input (i.e. string instead of
numeric). | also added code to detect the wrong type of vector input (points or polygon instead of lines).
| used the GRASS v.info command from within the script to determine if the input was a line vector layer
that contained at least one line.

The test case that used a network of streets as the input layer failed in the Linux and Windows
environments with the script as provided. However, the final updated script generated transects with
this input in the Linux environment even though | did not make an explicit change to fix the defect.
Since the error message generated by the original script in Linux shows a problem writing to a file, it is
possible that changing the temporary file creation system function from NamedTemporaryFile() to
mkstemp() caused this side effect.

| ran the script in a GRASS location using the WGS84 projection. Although running the script in this
projection is not likely a requirement, | was curious to see what would happen. The transect_spacing,
dleft, and dright parameters are most likely interpreted as degrees in this GRASS location. Although
degrees are not a convenient representation for transect spacing, the script should still work. The first
tests in this group used 50 for the transect spacing value. When the script generated no transects, this
confirmed that the parameter was not being interpreted as meters as in the NC State Plane test cases.
The final test in this group used 0.01 for the transect spacing. The script then generated transects

19



approximately 1000m apart. Given that 1/60th of a degree latitude equals one nautical mile or 1852m
then 1/100 (0.01) of a degree is approximately 1000m. Therefore, the script is interpreting the transect
spacing as degrees and functioning correctly in the WGS84 projection.

When | completed testing | extended the existing man page for the script. The man page can be viewed
at http://www4.ncsu.edu/~jlloyd/Lloydj MEA582f11/v transects.html. The HTML is included in the
appendix.

Conclusions

Setting up the GRASS environments from source code for both CentOS Linux 5.7 and Microsoft
Windows7 was time consuming and, at times, frustrating. However, now it is complete | have a better
understanding of the application's architecture. | am also prepared to continue working in GRASS
development by modifying GRASS source code for defect fixes or enhancements.

However, those not wanting to enhance the GRASS distribution for their needs can still extend the
GRASS functionality by writing python scripts. | have demonstrated in this project that this is possible in
both Linux and Windows environments. | have also demonstrated that testing in both environments is
required if the script is to be distributed publicly. Implementation differences in Linux and Windows
libraries mean that a script functioning in one environment is not guaranteed to function in the other.

Appendix

GRASS Start Script for Windows
This is the modified GRASS start script for Windows, which sets the environment variables need for
GRASS and python.

rem c:\0SGeo4W\bin\grass64.bat

@echo on

SET OSGEO4W_ROOT=C:\0SGeo4W

SET WINGISBASE=%0SGEO4W_ROOT%\apps\grass\grass-6.4.2svn
SET PYTHONPATH=%WINGISBASE%\etc\python

call %0SGEO4W_ROOT%\bin\o4w_env.bat

call %0SGEO4W_ROOT%\apps\grass\grass-6.4.2svn\etc\env.bat
"%WINGISBASE%'"\etc\init.bat %*

Test Case Commands
| used these commands from a GRASS text mode prompt to execute the test cases.

Parameter Verification Test Cases Commands

# 1 Input Parameter Required

python v.transects.py output=NH_2008_transects transect_spacing=50
g-remove vect=NH_2008_transects

# 2 Output Parameter Required

python v.transects.py input=NH_2008 1m transect_spacing=50
g-remove vect=NH_2008_transects

# 3 Transect_spacing Parameter Required

python v.transects.py input=NH_2008_1m output=NH_2008_transects
g-remove vect=NH_2008_transects

# 4 Transect spacing parameter number

20



python v.transects.py input=NH_2008_ 1m output=NH_2008_transects transect_spacing=xxx
g-remove vect=NH_2008_transects

# 5 Dleft parameter number

python v.transects.py input=NH_2008_1m output=NH_2008_transects transect_spacing=52 dleft=xxx
g-remove vect=NH_2008_transects

# 6 Dright parameter number

python v.transects.py input=NH_2008_1m output=NH_2008_transects transect_spacing=52 dright=xxx
g-remove vect=NH_2008_transects

# 7 Input does not exist

python v.transects.py input=xxx output=NH_ 2008 transects transect_spacing=52

# g.remove vect=NH_2008_transects — don’t remove

# 8 Output exists

python v.transects.py input=NH_2008_1m output=NH_2008_transects transect_spacing=52

python v.transects.py input=NH_2008_1m output=NH_2008_ transects transect_spacing=52
g-remove vect=NH_2008_transects

# 9 Invalid Option

python v.transects.py xxx=NH_2008_1m output=NH_2008_transects transect_spacing=52

g-remove vect=NH_2008_transects

# 10 Invalid Type Option

python v.transects.py xxx=NH_2008_1m output=NH_2008_transects transect_spacing=52 type=xxx
g-remove vect=NH_2008_transects

Shoreline Dataset Test Cases Commands
# Remove any outputs from previous runs
g-remove vect=NH_2008_transectsl
g-remove vect=NH_2008_transects2
g-remove vect=NH_2008_transects3
g-remove vect=NH_2008_transects4
g-remove vect=NH_2008_transects5
g-remove vect=NH_2008_transects6
g-remove vect=NH_2008_transects7
g-remove vect=NH_2008_transects8
g-remove vect=NH_2008_transects9

# 1 Parameters used in paper

python v.transects.py input=NH_2008 1m output=NH_2008_ transectsl transect_spacing=50

# 2 Large Spacing

python v.transects.py input=NH_2008_ 1m output=NH_2008_ transects2 transect_spacing=500

# 3 Zero Spacing

python v.transects.py input=NH_2008_1m output=NH_2008_transects3 transect_spacing=0

# 4 One Meter Spacing

python v.transects.py input=NH_2008_1m output=NH_2008_transects4 transect_spacing=1

# 5 Left/Right Different

python v.transects.py input=NH_2008_1m output=NH_2008_transects5 transect_spacing=52 dleft=25
dright=100

# 6 Zero Left

python v.transects.py input=NH_2008_1m output=NH_2008_transects6 transect_spacing=52 dleft=0
# 7 Zero Right

python v.transects.py input=NH_2008_1m output=NH_2008 transects7 transect_spacing=52 dright=0
# 8 Parameters used in paper with area

python v.transects.py input=NH_2008_1m output=NH_2008_transects8 transect_spacing=50 type=area
# 9 Parameters used in paper with line

python v.transects.py input=NH_2008_ 1m output=NH_2008_ transects9 transect_spacing=50 type=line

Verify Polylines of Various Shapes Test Cases Commands
# Remove any outputs from previous runs
g.remove vect=nolLines_transects
g-remove vect=multLines_transects
g-remove vect=circle_transects

g-remove vect=rightAngle_transects
g.remove vect=interLines_transects
g-remove vect=streets_wake_transects
g-remove vect=superlLong_transects
g.remove vect=freeHand_transects
g.remove vect=multLines_area

g-remove vect=multLines_line

# 1 No lines in input

21



input=noLines output=noLines_transects transect_spacing=50
input
input=multLines output=multLines_transects transect_spacing=50

python v.transects.py
# 2 Multiple lines in
python v.transects.py
# 3 Circle in input
python v.transects.py input=circle output=circle_transects transect_spacing=50

# 4 Right angle in input

python v.transects.py input=rightAngle output=rightAngle_transects transect_spacing=50

# 5 Intersecting lines in input

python v.transects.py input=interLines output=interLines_transects transect_spacing=50

# 6 Network of lines (streets)

python v.transects.py input=streets_wake output=streets_wake_transects transect_spacing=50
# 7 Superlong line in input

python v._transects.py input=superlLong output=superlLong_transects transect_spacing=50

# 8 Freehand in input
python v._transects.py
# 9 Points in input
python v.transects.py
# 10 Raster in input
python v.transects.py input=raster output=raster_transects transect_spacing=50

# 11 Multiple lines in input with area

python v.transects.py input=multLines output=multLines_area transect_spacing=50 type=area
# 12 Multiple lines in input with line

python v.transects.py input=multLines output=multLines_line transect_spacing=50 type=line

input=freeHand output=freeHand_transects transect_spacing=50

input=points output=points_transects transect_spacing=50

WGS Dataset Test Cases Commands
# Remove any outputs from previous runs

g-remove vect=multLinesWGS_transects
g.remove vect=freeHandWGS_transects
g-remove vect=multLinesWGSOl_transects

# 1 Multiple lines in
python v.transects.py
# 2 Freehand in input
python v.transects.py
# 3 Multiple lines in
python v.transects.py

input
input=multLinesWGS output=multLinesWGS_transects transect_spacing=50

input=freeHandWGS output=freeHandWGS_transects transect_spacing=50
input 0.01
input=multLinesWGS output=multLinesWGSOl_transects transect_spacing=0.01

Save Resulting Transects to ASCII Files Commands

| created scripts to save the datasets created by the test cases to ASCII files. Since the NC State Plane
Meters and WGS84 datasets are accessible via different GRASS locations, | needed two scripts. After
running the scripts | used the SlickEdit difference tool to compare outputs. The scripts are given below.

Script to Save NC State Plane Meters Datasets Created by v.transect to ASCII Files

v.out.ascii input=NH_2008_transectsl output=NH_2008_transectsl format=standard
v.out.ascii input=NH_2008_transects2 output=NH_2008_transects?2 format=standard
# Error message v.out.ascii input=NH_2008_transects3 output=NH_2008_transects3 format=standard

v.out.ascii
v.out.ascii
v.out.ascili
v.out.ascili
v.out.asci
v.out.asci
v.out.asci
v.out.asci
v.out.asci

input=NH_2008_transects4
input=NH_2008_transects5
input=NH_2008_transects6
input=NH_2008_transects?
input=NH_2008_transects8
input=NH_2008_transects9

output=NH_2008_transects4
output=NH_2008_transects5
output=NH_2008_transects6
output=NH_2008_transects7
output=NH_2008_transects8
output=NH_2008_transects9

format=standard
format=standard
format=standard
format=standard
format=standard
format=standard

input=nolLines_transects output=nolLines_transects format=standard

input=multLines_transects output=multLines_transects format=standard

input=circle_transects output=circle_transects format=standard

v.out.ascii
v.out.ascili
# failed v.out.ascii

input=rightAngle_transects output=rightAngle_transects format=standard
input=interLines_transects output=interLines_transects format=standard
input=streets_wake_transects output=streets_wake_ transects format=standard

v.out.ascii
v.out.ascili
v.out.ascii
v.out.ascii

input=superLong_transects output=superLong_transects format=standard

input=freeHand_transects output=freeHand_transects format=standard
input=multLines_line output=multLines_lines format=standard
input=multLines_area output=multLines_area format=standard

22



Script to Save WGS84 Datasets Created by v.transect to ASCII Files

v.out.ascii input=multLinesWGS_transects output=multLinesWGS_transects format=standard
v.out.ascii input=freeHandWGS_transects output=freeHandWGS_transects format=standard
v.out.ascii input=multLinesWGSOl_transects output=multLinesWGSOl_transects format=standard

Test Case Results
The results in this section are the outputs of the final v.transects.py python script in the Microsoft
Windows7 environment.

Parameter Verification Test Cases Results

Description Output

Input parameter required

Output parameter required

Transect_spacing parameter
required

Transect parameter number

Dleft parameter number

Dright parameter number

Input does not exist

Output exists

Invalid Option -

Invalid Type Option

23




Shoreline Dataset Test Cases Results

Description

Output

Parameters used in paper

Large transect spacing

Zero transect spacing

One meter transect spacing

24




Left/right transect spacing
different

Zero transect spacing on left

Zero transect spacing on right

25




Parameters used in paper
with area

Parameters used in paper
with line

Verify Polylines of Various Shapes Test Cases Results

Description Output

No lines in input

Multiple lines in input

26




Circle in input

Right angle in input

Intersecting lines in input

27




6 | Network of Lines (streets)
7 | Super long line

8 | Freehand

9 Points

10 | Raster

28




11

Multiple lines in input
with area

12

Multiple lines in input
with line

WGS Dataset Test Cases Results

Description Output
1 | Multiple lines in input No features created
2 | Freehand No features created
3 | Multiple lines in input

29




v.transects.py Script

Updates to Script
The original v.transects.py script is in the left window and the updated final script in the right window.

Update for Windows Implementation of Popen

Update for Windows Implementation of NamedTemporaryFile

Updates for Parameter Checking

Man page
The HTML for the man page associated with the v.transects.py script is below. The man page can be
viewed here http://www4.ncsu.edu/~jlloyd/Lloydj MEA582f11/v_transects.html.

<IDOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>

30



<head>

<title>GRASS GIS manual: v.transects.py</title>

<meta http-equiv=""Content-Type" content="text/html; charset=iso-8859-1">
<link rel="stylesheet" href='"grassdocs.css" type="text/css">

</head>

<body bgcolor="white'">

<img src="'grass_logo.png" alt="GRASS logo''><hr align=center size=6 noshade>

<h2>NAME</h2>

<em><b>v.transects.py</b></em> - Python script to create vector line or area transects along a
line

<h2>KEYWORDS</h2>

vector, transects, shoreline

<h2>SYNOPS1S</h2>

<b>v.transects.py</b> <b>input</b>=<em>name</em> <b>output</b>=<em>name</em>
<b>transect_spacing</b>=<em>float</em> [<b>dleft</b>=<em>fFloat</em>]
[<b>dright</b>=<em>float</em>] [<b>type</b>="line" | "area']

<h3>Parameters:</h3>

<DL>
<DT><b>input</b>=<em>name</em></DT>
<DD>Name for input line vector map</DD>

<DT><b>output</b>=<em>name</em></DT>
<DD>Name for output transects vector map</DD>

<DT><b>transect_spacing</b>=<em>float</em></DT>
<DD>Distance between transects</DD>

<DT><b>dleft</b>=<em>float</em></DT>
<DD>Distance transects extend on left side of line</DD>
<DD>Default: <em>transect_spacing</em></DD>

<DT><b>dright</b>=<em>float</em></DT>

<DD>Distance transects extend on right side of line</DD>

<DD>Default: <em>transect_spacing</em></DD>

<DT><b>type</b>="line" | "area"</DT>

<DD>Specifies the geometry of the transect</DD>

<DD>Default: "line'</DD>

</DL>

<H2>DESCRIPTION</H2><EM>V.transects</EM> creates equally spaced geometries along

input lines. The geometries can be lines or quadrilateral areas. Lines
and areas are generated to be perpendicular to the input line.

<H2>NOTES</H2>Input vector lines that are shorter than <B>transect_spacing</B>
are ignored.

<H2>EXAMPLES</H2>In these examples, the Nags Head location is used to generate a
shoreline and shore-perpendicular geometries:

<h3>Example 1) - Generate line transects along shoreline</h3>

31



<P>Generate 20 cross-shore transects along 2008 shoreline (1m contour)<BR>

<DIV class=code><PRE>r.contour input=NH_2008_1m output=NH_2008_1m level=1 cut=100
v.report map=NH_2008_1m option=length

cat]level|length

1]11]11037.86684790028

1038m / 20transects = 52m per transect (value for transect_spacing)

-transects input=NH_2008_1m output=NH_2008_transects transect_spacing=52

-.info NH_2008_transects

</PRE></DIV>

< < # # #

<h3>Example 2) - Generate line transects specifying the left and right length</h3>

<P>Generate longer, more parallel transects by specifying dleft and dright and
smoothing the input line<BR>
<DIV class=code><PRE>r.contour input=NH_2008_1m output=NH_2008_1m level=1 cut=100
v.generalize input=NH_2008_1m output=NH_2008_1m_smoothed \
method=sliding_averaging look_ahead=201
v.transects input=NH_2008_1m_smoothed \
output=NH_2008_transects_long_smoothed transect_spacing=52 \
dleft=20 dright=300
</PRE></DIV>

<h3>Example 3) - Generate area transects along shoreline</h3>

<P>Generate longer, more parallel transects by specifying dleft and dright and
smoothing the input line<BR>
<DIV class=code><PRE>r.contour input=NH_2008_1m output=NH_2008_1m level=1 cut=100
v.transects input=NH_2008_1m output=NH_2008_areas \

transect_spacing=52 dleft=20 dright=300 type=area
v.db.addtable NH_2008_areas
v.db.addcolumn map=NH_2008_areas columns="demStats DOUBLE PRECISION"
v.rast.stats vector=NH_2008_areas raster=NH_2008_1m column_prefix=NH2008
v.db._select NH_2008_areas
</PRE></DIV>

<H2>SEE ALSO</H2><EM><A
href="http://www4_ncsu.edu/~ejhardi2/v._generalize_html'>v_generalize</A>, <A
href="http://www4_ncsu.edu/~ejhardi2/r._transect.html">r._transect</A> </EM>

<H2>AUTHOR</H2>Eric Hardin, Helena Mitasova, Updates by John Lloyd
<P><lI>Last changed: $Date$</1> </P></BODY></HTML>

Final Script
My changes are marked with the initials "JL". The script is also available here
http://www4.ncsu.edu/~jlloyd/Lloydj MEA582f11/v.transects.py.

#1/usr/bin/env python
#
BHE A L A G A L A A G A

#

# MODULE: v.transects.py

# AUTHOR(S): Eric Hardin

# PURPOSE: Creates lines or quadrilateral areas perpendicular to a polyline
# COPYRIGHT: (C) 2011

#

# This program is free software under the GNU General Public

32



# License (>=v2). Read the file COPYING that comes with GRASS
# for details.

#

# UPDATES: John Lloyd November 2011

#

HHHEHHH A
#%Module

#% description: Transect Generator

#%End

#%option

#% key: input

#% type: string

#% description: Name of input vector map
#% required : yes

#%end

#%option

#% key: output

#% type: string

#% description: Name of output vector map
#% required : yes

#%end

#%option

#% key: transect_spacing

#% type: double

#% description: Transect spacing

#% required : yes

#%end

#%option

#% key: dleft

#% type: double

#% description: distance transect extends to the left of input line.
#% required : no

#%end

#%option

#% key: dright

#% type: double

#% description: distance transect extends to the right of input line.
#% required : no

#%end

#%option

#% key: type

#% type: string

#% description: Feature type

#% required : no

#% options: line,area

#% answer : line

#%end

from subprocess import Popen, PIPE, STDOUT
from numpy import array
from math import sqrt
import grass.script as grass
import tempfile
BHEEH A L
# load vector lines into python list
# returns v
# len(v) = number of lines in vector map
# len(v[i]) = number of vertices in ith line
# v[il] = [ xij, yij ] ,i-e., jth vertex in ith line
def loadVector( vector ):
expVecCmmd = "v.out.ascii format=standard input="+vector
# JL p = Popen(expVecCmmd, shell=True, stdin=PIPE, stdout=PIPE, stderr=STDOUT, close_ fds=True)

33



p = Popen(expVecCmmd, shell=True, stdin=PIPE, stdout=PIPE, stderr=STDOUT, close_fds=False)
vectorAscii = p.stdout.read().strip("\n")_split(*\n")

1 =0

while "ORGANIZATION® not in vectorAscii[l]:
1 += 1

while ":" in vectorAscii[l]:
1 += 1

v =1

while I < len(vectorAscii):

line = vectorAscii[l]-split()

if line[O] in [°L","B","A"]:
skip = len(line)-2
vertices = int(line[l])
1 += 1
v.append([1)
for 1 iIn range(vertices):

v[-1].append( map(Ffloat,vectorAscii[l].splitQ[:2]) )

1 +=1
1 += skip
elif line[0] in ["P","C","F","K"]:
skip = len(line)-2
vertices = int(line[1])
1 +=1

grass.fatal(C("'Problem with line: <%s>'") % vectorAscii[l])

if len(v) < 1:

grass.fatal(_(*"Zero lines found in vector map <%s>'") % vector)

return v

TR TRTRTN TR TN RN TR NIRRT NIRRT RN TR TN IR TN TR TN TR TN TRIRTNIRTN TR TN
HHHHHHHH AR

# get transects from input vector

def getTransects( vector, dleft, dright, transect_spacing ):

transect_locs =
for line in vector:
transect_locs.append([1ine[0]])

[1 # holds locations where transects should intersect input vector lines

# 1 starts at the beginning of the line.
# j walks along the line until j and 1 are separated by a distance of transect_spacing.

# then, a transect is placed at j,
the line is reached
i-o
J =i+l
while j < len(line):
d = dist( line[i]l,line[j] )
if d > transect_spacing:

is moved to j, and this is iterated until the end of

r = (transect_spacing - dist(line[i],line[j-1]) )/( dist(line[i],line[j]) -

dist(line[i].line[j-11) )

transect_locs[-1].append( (r*array( line[j] ) + (1-r)*array( line[j-1]

) .tolistQ) )

transect_ends = []
for transect in transect_locs:

transect_locs[-1][-1]

if len(transect) < 2: # if a line in input vec was shorter than transect_spacing
continue # then don"t put a transect on it

transect_ends.append([1)
transect = array( transect )
Vv =

NR( transect[0], transect[1] ) # vector pointing parallel to transect

34



transect_ends[-1]-append( [ transect[0]+dleft*v, transect[0]-dright*v ] )
for 1 in range(l,len( transect )-1,1):
v = NR( transect[i-1], transect[i+1] )
transect_ends[-1]-append( [ transect[i]+dleft*v, transect[i]-dright*v ] )
v = NR( transect[-2], transect[-1] )
transect_ends[-1].append( [ transect[-1]+dleft*v, transect[-1]-dright*v ] )
return transect_ends

T
# calculate scalar distance between two points
def dist( ip, fp ):
return sqrt( (ip[0]-fp[O])**2 + (ip[1]-fp[1])**2 )

T
# take a vector, normalize and rotate it 90 degrees
def NR(C ip, fp ):

x = fp[0] - ip[O]

y = fp[1] - ip[1]

r = sqrt( x**2 + y**2 )

return array([ -y/r, x/r ])

HAHAHAH AR AR
# write transects
def writeTransects( transects, output ):

transects_str = **

for transect in transects:

transects_str += "\n"_join( [ "L 2\n"+" "_join(map(str,end_points[0]))+"\n"+"

" .Join(map(str,end_points[1]))+"\n" for end_points in transect ] )

# JL Rewrote Temporary File Logic for Windows

_, temp_path = tempfile.mkstemp()

a = open(temp_path, "w")

a.write( transects_str )

a.seek(0)

a.close()

grass.run_command(“v.in.ascii®, flags="n", input=temp_path, output=output, format="standard®)

T T
# writes areas
def writeQuads( transects, output ):
quad_str = **
cnt =1
for line in transects:
for tran in range( len(line)-1 ):
ptl * "_join( map(str, line[tran][0]) )
pt2 = * "_join( map(str, line[tran][1]) )
pt3 = * "_join( map(str,line[tran+1][1]) )
pt4 = * "_join( map(str, line[tran+1][0]) )

pt5 = ptl
# centroid iIs the average of the four corners
c = " "_join( map(str,[

0.25*(line[tran][0][O]+1ine[tran][1][O0]+line[tran+1][O0][O0]+Nine[tran+1][1]1[0]),
0.25*(line[tran][O1[1]1+line[tran][1]1[1]+1ine[tran+1][O][1]+hine[tran+11[11[1DD D) )
quad_str += "B 5\n" + *"\n"_join([ptl,pt2,pt3,pt4,pt5]) + "\n*"
quad_str += "C 1 1\n" + ¢ + "\nl1 " + str(cnt) + "\n"
cnt += 1
# JL Rewrote Temporary File Logic for Windows
_, temp_path = tempfile.mkstemp()
a = open(temp_path, “w®)
a.write( quad_str )
a.seek(0)
a.close()

35



grass.run_command(“v.in.ascii®, flags="n", input=a.name, output=output, format="standard")
a.close()

BHEEH A G
# Main method
def main():
vector = options["input”]
output = options["output™]
# JL Handling Invalid transect_spacing parameter

try:

transect_spacing = float(options[~transect_spacing®])
except:

grass.fatal(("Invalid transect_spacing value.'))
if transect_spacing == 0.0:

grass.fatal (_(""Zero invalid transect_spacing value.'))
dleft = options[“dleft™]
dright = options["dright”]
shape = options[“type~]
print dleft, transect_spacing
if not dleft:
dleft = transect_spacing
else:
# JL Handling Invalid dleft parameter
try:
dleft = float(dleft)
except:
grass.fatal(C_("Invalid dleft value.™))
if not dright:
dright = transect_spacing

else:
# JL Handling Invalid dright parameter
try:
dright = float(dright)
except:

grass.fatal(C(""Invalid dright value.™))
# check if input file does not exists
if not grass.find_file(vector, element="vector®)["file"]:
grass.fatal (_(""<%s> does not exist.') % vector)
# check if output file exists
if grass.find_file(output, element="vector®)["mapset®] == grass.gisenv()["MAPSET"]:
if not grass.overwrite():
grass.fatal (_("'output map <%s> exists') % output)

#JL 1s the vector a line and does if have at least one feature?
info = grass.parse_command("v.info", flags = "t", map = vector)
if info["lines"] == "0":

grass.fatal (_("'vector <%s> does not contain lines') % vector)

TR TR TR TR TN IR NIRRT NI TN IR TN TR TN TR TN TN IR TN TR TN TR TR IRTN IR TT]
HHHHHH AR

v = loadVector( vector )
transect_ends = getTransects( v, dleft, dright, transect_spacing )
if shape == "line" or not shape:
writeTransects( transect_ends, output )
else:
writeQuads( transect_ends, output )

if _name__ == "_main__":
options, flags = grass.parser()
main()

36



