
*Email: sawendel@ncsu.edu, Unity ID: sawendel

Understanding the r.watershed module for development of a testing suite using GRASS’s

testing framework and Python.

Stephanie Wendel*

GIS 582 601, North Carolina State University, Raleigh, United States

April 28th, 2015

Introduction

GRASS GIS’s r.watershed module allows for users to perform analysis on an input elevation to

find key hydrological parameters and Revised Universal Soil Loss Equation (RUSLE) factors.

Specifically, the function can generate flow accumulation, drainage direction, the locations of

streams and watershed basins, and LS and S factors (Ehlschlaeger 2014). This functionality has

been applied in the Metz et al (2010) study that examined the extraction of streams using new

implementations of the least-cost path search algorithm used in the r.watershed module. In

making these improvements, test results were compared with the method before and after the

changes. The results showed there was a 350 times faster processing speed in the newer

implementation of the software (Metz et al. 2010, p 3220). However, additional smaller grain

tests need to be developed to make sure the tool functions consistently before and after iterative

changes to the software. Unit testing allows for a breakdown and testing of the software into its

most basic code level in an isolated environment to see if the given conditions produce the

expected results (Sale 2014, 2.1). Within the r.watershed module, there are many parameters that

can be tested against to insure consistent output to insure they are performing correctly.

Exploring and creating tests during the development of code is an integral part of an agile

software development. This method of development focuses on testing throughout the creation of

a product which allows for flexibility in design and improved quality of the functions based on

feedback given by the stakeholders (Sale 2014, 5.1). Instead of waiting for the product to be

completed and then tested, agile software development calls for testing and feedback collection

to be done from start to finish. The developers can make changes based on the requirements of

the users before the project is completed to create a better final output. Specific tests can be

added or removed based on relevance or adjustments that are done to the source code. In this

process, manual tests and investigation need to be done to understand what the expected results

should be for a given test. One form of testing is the unit test which breaks code functionality

down to its most basic pieces to test for expected values. It is either true that it is the expected

value or it is false.

One way that unit testing can be done on GRASS is by using the testing framework. The GRASS

testing framework is term used to describe the system of writing and running tests within

GRASS which uses the gunittest package (GRASS Development Team, 2015). This package is

based on the Python unittest package but has been specialized to focus on GRASS specific needs

for testing such as creation of GRASS-aware HTML test reports or testing processes that should

not be influenced by a process termination caused by a C library function (GRASS Development

Team, 2015). These tests allow for the developers to run these test cases before committing the

updated code to the master copy. This provides feedback to the developer on whether there is a

potential problems with the code base. It might not catch everything, but it is a way to insure

there is not a loss of functionality with an update.

mailto:sawendel@ncsu.edu

2

Objective

The main objective of this project is to build a test suite for the r.watershed module in GRASS

using the GRASS testing framework. Through this process, I will explore unit testing within

agile software development, how the GRASS testing framework works, and processes found

within the r.watershed module. My personal goals of this project were to get involved with some

Python scripting and to learn about GRASS GIS which I have not been previously exposed. The

test developed for this project will be submitted to be included in GRSS for testing the module in

the current and future versions of the software.

Data and study site

The main dataset used within the test suite is the Elevation raster which is part of GRASS’s

North Carolina sample data. This has an area of interested in South-west Wake County, NC at a

resolution of 10m (boundary coordinates 35:48:34.6N-35:41:15.0N, 78:46:28.6W-78:36:29.9W).

The projection is North Carolina State Plane Meters. The Elevation raster can be downloaded

with GRASS as part of the optional sample data install and is placed in the folder

nc_spm_08_grass7. This will allow for testing to be conducted by any user of the testing suite

without requiring them to have their own data, download additional files, or for the test to

attempt to generate it. These data sources could be used and could provide a more complex

testing which encouraged by the testing framework developers (GRASS Development Team,

2015). The Elevation raster in particular covered a good size region which fit the needs for the

input surface used to extract the basins and accumulation outputs.

Approach

The agile software development method was used as a guide to reach my end goal of a test for

the r.watershed module. The point of using this method of development is to cycle through the

process to continue to improve on the functionality of the software while getting feedback. The

process required me to first experiment with and understand the r.watershed module. Next, I was

able to start exploring the testing framework and how to set it up in a Python script. With the

basic understanding of of what the r.watershed test suite might look like, it was time to consider

how I would store and share my code to get feedback. To do this, I used GitHub, a code sharing

and management platform. This allowed me to get some feedback and to document my

bugs/enhancements as well as plan my project somewhat. I was able to then start my code and

cycle back through this process of research-design-develop-feedback loop. The following

sections go into more detail on the process.

Software setup

Setting up the testing environment was the first step. For my tests, I used a Windows 7 64-bit

machine using a non-administrator user. This is one of the supported operating systems and by

using a non-administrator I make sure there are no permission issues that a lower user might

have. The testing suites are meant to work with any developer version of GRASS. I installed

GRASS version 7.1.svn-64925-31 which was at the time a current daily developer build of the

software. More details on the setup workflow can be found in Appendix 1. I ran into a few issues

installing the software which are discussed in Appendix 3. I also maintained a 7.0 version of the

software for my manual tests of the module as well as finding expected values. Since the

3

software currently does not include this test in the source code, this will have to be run manually.

In order to run this as a standalone test, a GRASS session must be started and a location and

mapset setup for the test to work. For the complete steps on how to run a manual test see

Appendix 1.

GitHub

Collaboration is an important part of the agile software development methods and GitHub

provides a public space to work with code. This website allows users to maintain code, submit

issues and pull other user’s code to modify and push back to the original. Users could post

feedback and report issues found in the test script. Also, I was able to log my own issues here to

keep track of the changes I needed to make. It also allowed me some flexibility in planning out

different phases of my script so I could setup goals for the next iteration of my test suite. My

plan was to setup milestones to mark different versions of my script. Each one would have

enhancements logged for the new functionality I would build along with bugs I found in the

code. My script would then be updated to fix what I had added for the milestone and the changes

then committed and synced back up to the master copy on GitHub.

Building the tests

In order to develop these tests, I focused first on exploring the GRASS, the r.watershed module,

and the testing framework. This research helped me understand the key pieces that I needed to

build the tests. For the module itself, I explored the documentation as well as tried some basic

tests to see how the module worked such as seeing what different parameters did to the results.

Once I had a general understanding of the module, I was able to select some of the parameters I

wanted to test, such as if the outputs were made or if the drainage direction output was within the

expected values.

With the basic ideas of the parameters I wanted to test, I started to form the basic structure

required of the testing framework. The chosen language of the testing framework is Python. The

basic structure of the script needs the gunittest package to be imported, a test case class setup,

and the inclusion of basic testing methods. The within the script a test case class is created, this is

a particular class to the testing framework that knows how to run the GRASS specific assertion

functions. Within the class, there are basic methods to create the environment used within the

tests such as setting up the region used or removing the rasters from the mapset after each test.

These are called test fixtures and are the setUpClass, tearDownClass, and teardown methods.

Multiple test classes can be built in one test file, but only if the testing environment needs to

change. The only other major part of the test script is the method created within the class to

provide the actual tests. These tests just need to start with ‘test_’ to run the method from the

TestCase class that was built. These tests are the unit tests and should be simple, testing one

basic concept. In order to test the module within these tests, an assert function is used that is built

in to the testing framework. These functions check that some predicate is fulfilled. The

assertModule method is used to run r.watershed and gives more control to the framework to

show if it worked or failed. The outputs generated from running the module in this way can also

be tested using assert methods such as assertRasterMinMax which tests that the expected

min/max match the generated values provided. It is through these assert methods that the module

can be evaluated and tested. Overall, the framework requires very little to setup to perform these

4

tests; however, it does require knowledge of the testing framework and module that is being

tested. The testing document “Testing GRASS GIS source code and modules”, found in the

references provides a full explanation on this setup.

To write the tests, I went back and forth between research and manually testing my ideas to

writing them out and running the script. Through my own testing, I was able to review and

analyze my script to evaluate if the results and tests made sense. When I reached a milestone in

my development based on the issues I submitted to GitHub, I would commit the scripts changes

back to the master copy. Instead of planning specifically for each milestone at the beginning of

my project, I added the enhancements and bugs as I developed to allow for flexibility in the plan.

Once the test file is considered and incorporated into GRASS as a valid test suite, it can be run

with all the other test files. Typically this will be done before committing the updates of the code

to the master version.

Results

There were four milestones for my project setup in GitHub. I created these as the version

numbers of my tests. My first iteration of the test script included the basic setup of the testing

framework and one unit test to see if the outputs were made. The second iteration added

additional tests that are a little more complex and work more with the sample data, such as the

test_fourFlag and test_watershedThresholdfail. My third iteration build the rest of the tests

test_thresholdsize, test_drainageDirection, and test_basinValue. The last version was reserved

for making final corrections and minor code changes. The final version consisted of six tests and

139 lines of code. The script and link to the GitHub page can be found in Appendix 2.

To get a basic understanding of working with the framework, I started with the

test_OutputCreated() test. I created this test to evaluate if the output raster was generated from

the module. I used the assertModule and assertRasterExists functions from within the framework

to assess the outputs. After the final version, I found that I missed an output parameter in help.

This parameter was overlooked but can be included in a future iteration.

Test_fourFlag was the second test built. It runs the r.watershed module twice, once with the 4

flag and once without. Running the module with the four flag, allows for only horizontal and

vertical flow of water (Ehlschlaeger, C., 2014). The help also indicates that the stream and slope

length outputs should be approximately the same as the ones run with diagonal flow included. To

compare the outputs, the assertRasterNoDifference method was used. This ended up being the

hardest test to decide if the values I provided should pass or fail. The assertRasterNoDifference

method allows the user to apply a precision values calculated in the difference of the reference

raster and the output. The outputs with the 4 flag were used as the actual and the ones without it

were set as the reference. The method calculates the difference and passes if they are considered

within the precision range different. The values I used for the precision were 100 for the streams

and 10 for the slope length. Anything much less than these values would cause the test to fail.

More investigation should be done by an expert to make sure these values make sense in this test.

From the manual tests, the outputs do seem very similar. For example, in the south-west region

of the outputs, there is some slight variation in the stream locations as seen in Figure 1 and 2.

Changing the allowed flow direction changes the point at which these two branches connect. The

5

statistics for both of the stream outputs can be seen in Table 1 and 2. The results are visually

similar.

Figure 1 stream output without 4 flag

Table 1. stream r.univar

results

total null and non-null

cells: 2025000

total null cells: 2012344

Of the non-null cells:

n: 12656

minimum: 2

maximum: 256

range: 254

mean: 122.276

mean of absolute values:

122.276

standard deviation: 79.4923

variance: 6319.03

variation coefficient:

65.0105 %

sum: 1547526

Figure 2 stream output with 4 flag

Table 2. stream4 r.univar

results

total null and non-null

cells: 2025000

total null cells: 2006863

Of the non-null cells:

n: 18137

minimum: 2

maximum: 324

range: 322

mean: 149.257

mean of absolute values:

149.257

standard deviation: 102.576

variance: 10521.8

variation coefficient:

68.7245 %

sum: 2707068

The r.watershed module uses a threshold value to adjust the size of the basins and it is the

minimum size of an exterior watershed basin (ones with one stream) in cells (Ehlschlaeger, C.,

2014). Test_watershedThresholdfail tests whether the values provided in the threshold parameter

meet the requirements of being an integer. Any negative value or zero will cause the tool to fail.

Instead of running the assertModule method, I used the assertModuleFail to conduct this test.

This method runs the module with the expectation that it will fail. If it fails, then the test is

passed. The expectation is that a negative value or zero should cause the module to throw an

error stating that the value must be an integer.

6

The test_thresholdsize function also works with the threshold parameter but this time it looks at

the expected number of basin to be produced. I used the range of values from the manual tests in

order to test to see if a particular size basin produce the minimum and maximum value and tested

it with the assertRasterMinMax method. The first one uses 100000 as the threshold (Figure 3)

and the second 10000 (Figure 4). The Univar module was used to find the min and max basin

values and then used in the assertRasterMinMax to run the test. The values for 100k and 10k can

be found in Table 3 and 4 respectively. In the test, I do two threshold sizes, but this could be

increased to make a wider test.

Figure 3 Basins with threshold of 100k

Table 3. Basin 100k Univar

total null and non-null cells: 2025000

total null cells: 470418

Of the non-null cells:

n: 1554582

minimum: 2

maximum: 12

range: 10

mean: 7.06499

mean of absolute values: 7.06499

standard deviation: 3.57663

variance: 12.7923

variation coefficient: 50.6246 %

sum: 10983112

Figure 4 Basin with threshold of 10k

Table 4. Basin 10k Univar

total null and non-null cells: 2025000

total null cells: 145649

Of the non-null cells:

n: 1879351

minimum: 2

maximum: 256

range: 254

mean: 123.411

mean of absolute values: 123.411

standard deviation: 83.5231

variance: 6976.1

variation coefficient: 67.6786 %

sum: 231933268

The fifth test was the test_drainageDirection. Similar to the threshold size test, I found the

expected values using the Univar module by manually testing as seen in Figure 5 and Table 5.

The drainage output can be given in a range of -8 to 8. No matter the data, the values can be

expected to fall within this range. According to the documentation, these values are multiplied by

45 to get a direction for a max of 360 (Ehlschlaeger, C., 2014). To make sure the output is within

7

that range, the assertRasterMinMax method is utilized to test the output’s range against these

given values.

Figure 5 Drainage Output

Table 5. Drainage Univar

total null and non-null

cells: 2025000

total null cells: 0

Of the non-null cells:

n: 2025000

minimum: -8

maximum: 8

range: 16

mean: 4.48374

mean of absolute values:

4.48515

standard deviation: 2.2943

variance: 5.26382

variation coefficient:

51.1694 %

sum: 9079565

The final test is test_basinValue which makes sure the basin value is assigned a positive number.

It basically just checks that the value is between 0 and a large number, in this case 1000000. In

building this test, I found a potential documentation bug with the areas that were not made into a

basin. The documentation set these cells to 0, but the tool set them to null. Null makes more

sense within the output. More information can be found in Issue 2 of Appendix 3. By finding this

in the development stage, the script was already useful in improving the software. A few more

adjustments could be done to go a step further with the test and making sure the values are only

even, positive numbers.

My results from running the tests can be seen in Table 6. I was able to get all six to pass, but as

noted there is the possibility with changes to the precision that test_fourFlag could fail. The

general feedback I noted for these modules can also be found in Table 6. In addition to

evaluating myself, I received some feedback from Vaclav Petras, a GRASS developer and

graduate PhD student at North Carolina State University. The suggestions he made showed me

places in my code where I had some errors in my understanding of the testing framework’s

requirements such as unnecessary checks in my test_OutputCreated() function. In this function, I

had an initial check to see if the maps already existed in the mapset. However, this was not

needed as the tool would have failed because of no overwrite if they did. This function’s focus

was to look at the existence of the output and this would have change its purpose to be more

along the lines of something used to test the overwrite parameter. I removed these lines of code

to simplify the test. Another piece of feedback I received for this test was to make more

informative messages in this function. I had setup the messages to report back the raster name

8

that failed to be created but this actually could be confusing to the user or developer. It makes

more logical sense for the message to report back the parameter that is not creating an output.

Table 6. Test functions with test result and feedback.

Test Success/Failure Feedback

test_OutputCreated Success Include output of TCI. New to version 7.0.

test_fourFlag Both Needs to be evaluated by expert to see if the

precision values make sense in the test.

test_watershedThresholdfail Success Test the messages produce when it fails

test_thresholdsize Success More threshold sizes included in the test

test_drainageDirection Success Test more raster inputs

test_basinValue Success Test that values are only even numbers.

At the end of my development, I was able to contribute to GRASS GIS by submitting my

project’s code as an Enhancement to be included into a future build of the software (Figure 6). It

has been already incorporated and works within the test suite. Others can use the test from this

project as a starting place to develop further tests of the r.watershed module.

Figure 6 Ticket submitted to add the test I created to GRASS.

Discussion

My participation in agile software development was twofold. First, in building the test suite, I

was able to contribute to GRASS development by providing a piece of code that can be used in

this version and future ones to test the quality of the r.watershed module. By providing my code,

I have increased the quality of the software and provided something that can be further

developed and improved based on stakeholder needs. Secondly, I applied the agile development

methodology to my own development of the test suite script. I did this through my milestones

and building the small number of focuses tests for each one. Throughout the development, I

tested my code and had it available for feedback. One problem I had was that I had a tendency to

develop my code in big chunks without always getting the feedback I needed for proceeding on

9

to additional tests. In terms of my project, I relied heavily on the research and tests I did to

understand the r.watershed module instead of working within an expert or developer. I did have

some feedback but it could have sought out more from different stakeholders. Without some of

the time constraints I had, this would have been beneficial to my process. I also could have

documented my changes and improvements more. I found myself focusing more on writing the

actual code than considering the ways I was changing it or my thought process. While agile

software development does not always focus on heavy documentation as an important element to

the process, I could have improved my commit messages to be more explanatory in what was

done for that commit to the master branch in GitHub. I could have also committed more often

instead of waiting until I felt like I had completed the milestone.

Conclusion

This project gave me the opportunity to learn about the processes of agile software development

by exploring GitHub, the GRASS testing framework, and unit testing within Python. Developing

the tests scripts using the testing framework was easy to do given there is some knowledge of the

methods of the framework and working with Python. The framework will make it easier to

incorporated additional tests such as this one into GRASS GIS to provide the additional testing

on each iteration of the code.

Future Work

Additional considerations for future work focus on improving on the tests for the r.watershed

module. There are many more tests that could be done such as testing for more expected values

from the outputs, the memory parameter to see if it is consuming the correct amount, and the

error messages produced. In addition, random data could be used or even another dataset to give

a wider spread of tests. There are a number of different assert methods I did not use from the

testing frame work that might test things better or would show more important comparisons.

Additional feedback from the GRASS development team should be acquired to see what might

be the most important parts to test as well as to test for new functionality that they might be

incorporating into the latest builds.

Acknowledgements

Special thanks to Vaclav Petras for the guidance provided in understanding the GRASS testing

framework and for providing feedback on my tests.

Copyright

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International

License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/.

References

Carpendter, T.M, Sperfslage, J.A., Georgakakos, K.P., Sweeney, T. and Fread, D.L., 1999.

National threshold runoff estimation utilizing GIS in support of operational flash flood warning

systems. Journal of Hydrology, 224 (1-2), 21-44.

Ehlschlaeger, C., 2014. r.watershed [online]. GRASS GIS 7.0.0svn Reference Manual. Available

from: http://grass.osgeo.org/grass70/manuals/r.watershed.html [Accessed 12 February 2015].

10

GRASS Development Team, 2015. Testing GRASS GIS source code and modules [online].

GRASS GIS 7.1.svn Reference Manual. Available from:

http://grass.osgeo.org/grass71/manuals/libpython/gunittest_testing.html [accessed 12 February

2015].

Metz, M., Mitasova, H. and Harmon, R.S. 2010. Accurate stream extraction from large, radar-

based elevation models. Hydrology & Earth System Sciences Discussions, 7 (3), 3213-3235.

Neteler, M. and Mitasova, H., 2008. Open Source GIS: a GRASS GIS Approach. New York:

Springer.

Sale, D., 2014. Testing Python, Applying unit testing TDD, BDD, and Acceptance testing. West

Sussex: Wiley. Kindle Fire.

Appendix 1: Setting up GRASS for testing

Installation

The following outlines the steps needed to install a GRASS developer edition on windows and

run this test.

On a windows machine, navigate to the following link to the OSGeo project site for GRASS:

http://grass.osgeo.org/download/software/ms-windows/

Find the header that says it has the development, daily builds. At the time of this project, the

development builds were for GRASS GIS 7.1. Click the download link. This will take you to the

current list of daily builds for that version. Choose one and download the executable.

Once downloaded, double click on the executable to install. Follow the step by step instructions

for installation and make sure to install the North Carolina Sample data.

Running the Test Script

Once installed, double click on the GRASS Icon or find it in the Start Menu to launch the

application.

In the Startup dialog, find the database directory where the North_Carolina sample data is

located. Next set the GRASS location to the North_Carolina folder. Create a new mapset and

click ‘Start GRASS session’. The GUI will open, but this can be ignored. The session is needed

to run the test as a standalone file.

Switch over to the Command Line view of GRASS. Type ‘python’ followed by the location to

the .py file that contains the tests. Such as

python D:\HomeWork\Github\GRASS-r.Watershed-UnitTest\GRASS_rWatershed_UnitTest.py

Hit enter. The test will run. The tool messaging will appear in the command line window. It will

show text that may be seen if the tool was ran within the GUI. At the end it will show how many

tests were successful or failed or if there were errors. Some examples are listed below in Figures

7-9. This will help to determine problems in the r.watershed module that need to be looked into

further by a developer of the module. Notice in Figure 9, the messaging tells the user which test

http://grass.osgeo.org/download/software/ms-windows/

11

failed. In this example’s case, it was the test_OutputCreated test. The testing framework also has

the ability to provide some basic messaging about what might be the problem. For example,

“There is no mapset <test_accumulation> of type <raster> in the current mapset.

Figure 7 A test failure within the command line interface.

Figure 8 A test success within the command line interface.

12

Figure 9 Error in a test within the command line interface.

Appendix 2: The script

The Github version of this script can be found here: https://github.com/swwendel/GRASS-

r.Watershed-UnitTest. Bugs and enhancements found within the different tests and general

progress in the code can be tracked through the milestones and issues section.

"""

Name: GRASS_rWatershed_UnitTest

Purpose: This script is to demonstrate a unit test for GRASS's r.Watershed

 module for GIS582 at NCSU. This Unit Test must be placed in the

 directory testsuite of the GRASS installation.

Author: Stephanie Wendel - sawendel

GRASS: 7.1.svn-r665096-56

Version: 1.4

Modified: 4/20/2015

Copyright: (c) sawendel 2015

Licence: GNU GPL

"""

import grass testing module gunittest

import grass.gunittest

from grass.gunittest import TestCase, test

#test case for watershed module which is derived from

grass.gunittest.TestCase

class TestWatershed(grass.gunittest.TestCase):

 #Setup variables to be used for outputs

 accumulation ='test_accumulation'

 drainage ='test_drainage'

https://github.com/swwendel/GRASS-r.Watershed-UnitTest
https://github.com/swwendel/GRASS-r.Watershed-UnitTest

13

 basin ='test_basin'

 stream ='test_stream'

 halfbasin ='test_halfbasin'

 slopelength='test_slopelength'

 slopesteepness = 'test_slopesteepness'

 elevation = 'elevation'

 @classmethod

 def setUpClass(cls):

 """Ensures expected computational region and setup"""

 #Always use the computational region of the raster elevation

 cls.use_temp_region()

 cls.runModule('g.region', raster=cls.elevation)

 @classmethod

 def tearDownClass(cls):

 """Remove the temporary region"""

 cls.del_temp_region()

 def tearDown(cls):

 """Remove the outputs created from the watershed module after each

test

 is run."""

 cls.runModule('g.remove', flags='f', type='raster',

name='{0},{1},{2},{3},{4},{5},{6},{7},{8}'.format(cls.accumulation,

 cls.drainage, cls.basin, cls.stream, cls.halfbasin,

 cls.slopelength, cls.slopesteepness, 'test_lengthslope_4',

 'test_stream_4'))

 def test_OutputCreated(self):

 """Test to see if the outputs are created"""

 #run the watershed module

 self.assertModule('r.watershed', elevation=self.elevation,

 threshold='10000', accumulation=self.accumulation,

 drainage=self.drainage, basin=self.basin, stream=self.stream,

 half_basin=self.halfbasin, length_slope=self.slopelength,

 slope_steepness=self.slopesteepness)

 #check to see if accumulation output is in mapset

 self.assertRasterExists(self.accumulation,

 msg='accumulation output was not created')

 #check to see if drainage output is in mapset

 self.assertRasterExists(self.drainage,

 msg='drainage output was not created')

 #check to see if basin output is in mapset

 self.assertRasterExists(self.basin,

 msg='basin output was not created')

 #check to see if stream output is in mapset

 self.assertRasterExists(self.stream,

 msg='stream output was not created')

 #check to see if half.basin output is in mapset

 self.assertRasterExists(self.halfbasin,

 msg='half.basin output was not created')

 #check to see if length.slope output is in mapset

 self.assertRasterExists(self.slopelength,

14

 msg='length.slope output was not created')

 #check to see if slope.steepness output is in mapset

 self.assertRasterExists(self.slopesteepness,

 msg='slope.steepness output was not created')

 def test_fourFlag(self):

 """Test the -4 flag to see if the stream and slope lengths are

 approximately the same as the outputs from the default module run"""

 #Run module with default settings

 self.assertModule('r.watershed', elevation=self.elevation,

 threshold='10000', stream=self.stream,

 length_slope=self.slopelength, overwrite=True)

 #Run module with flag 4

 self.assertModule('r.watershed', flags='4', elevation='elevation',

 threshold='10000', stream='test_stream_4',

 length_slope='test_lengthslope_4')

 #Use the assertRastersNoDifference with precsion 100 to see if close

 #Compare stream output

 self.assertRastersNoDifference('test_stream_4', self.stream, 100)

 #Compare length_slope output

 self.assertRastersNoDifference('test_lengthslope_4',

 self.slopelength, 10)

 def test_watershedThreadholdfail(self):

 """Check to see if it will allow for a threshold of 0 or a

negative"""

 self.assertModuleFail('r.watershed', elevation=self.elevation,

 threshold='0', stream=self.stream, overwrite=True,

 msg='Threshold value of 0 considered valid.')

 self.assertModuleFail('r.watershed', elevation=self.elevation,

 threshold='-1', stream=self.stream, overwrite=True,

 msg='Threshold value of 0 considered valid.')

 def test_thresholdsize(self):

 """Check to see if the basin output is within the range of values

 expected"""

 self.assertModule('r.watershed', elevation=self.elevation,

 threshold='100000', basin=self.basin, overwrite=True)

 # it is expected that 100k Threshold has a min=2 and max=12 for this

data

 self.assertRasterMinMax(self.basin, 2, 12)

 # it is expected that 100k Threshold has a min=2 and max=256 for this

data

 self.assertModule('r.watershed', elevation=self.elevation,

 threshold='10000', basin=self.basin, overwrite=True)

 self.assertRasterMinMax(self.basin, 2, 256)

 def test_drainageDirection(self):

 """Check to see if the drainage direction is between -8 and 8."""

 self.assertModule('r.watershed', elevation=self.elevation,

 threshold='100000', drainage=self.drainage)

 #Make sure the min/max is between -8 and 8

 self.assertRasterMinMax(self.drainage, -8, 8,

 msg='Direction must be between -8 and 8')

15

 def test_basinValue(self):

 """Check to see if the basin value is 0 or greater"""

 self.assertModule('r.watershed', elevation=self.elevation,

 threshold='10000', basin=self.basin)

 #Make sure the minimum value is 0 for basin value representing unique

positive integer.

 self.assertRasterMinMax(self.basin, 0, 1000000,

 msg='A basin value is less than 0 or greater than 1000000')

if __name__ == '__main__':

 test()

Appendix 3: Issues

Issue 1:

I had some problems with this installation when I tried to start my GRASS session. It failed to

load and the process ended with a non-zero return code -1073741511 (Figure 10) and a message

box saying “The procedure entry point sqIite3 register could not be located in the dynamic link

library sqIite3.dll” (Figure 11).

Figure 10 Error -1073741511 in command line interface.

Figure 11 Popup message showing the sqlite3.dll warning.

I uninstalled this version and attempted to run the 7.1.svn-64925-38 build instead which also

failed with the same error. It also gives a warning that no addons metadata file available. In

working with Vaclav Petras, he identified that the issue was related to a sqlite3.dll conflict which

can be found in more detail on this page: http://grasswiki.osgeo.org/wiki/WinGRASS_errors. I

renamed the other versions of sqlite3.dll I had on this machine and the software worked as

expected.

http://grasswiki.osgeo.org/wiki/WinGRASS_errors

16

Issue 2:

In testing the basin output, I found that the documentation did not match the results I was seeing.

It says, “0 values indicate that the cell is not part of a complete watershed basin in the current

geographic region.” When I did my manual tests of r.watershed these areas were given a value of

null instead of 0. The range can also be seen to start at 2 instead of 0. I consulted with Vaclav

Petras and he suggested the documentation may be wrong. It makes more sense for the value to

be null instead of zero. I created an account on http://trac.osgeo.org/grass/ and submitted a ticket

for this to be investigated further. The ticket can be seen in Figure 12.

Figure 12 Ticket 2664 showing doc bug submitted to OSGeo.

http://trac.osgeo.org/grass/

