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The problem is formulated as follows:
Given the m values of a studied phenomenon zj , j = 1, . . . , m measured

at discrete points rj = (xj , yj), j = 1, . . . , m within a certain region of 2-
dimensional space, find a function F (r) which fulfils the following condition:

F (rj) = zj , j = 1, . . . , m (1)

The problem does not have a unique solution so additional conditions are used.
However, most interpolation methods can be expressed as a sum of two

components

F (r) = T (r) +

m
∑

j=1

λjR(r, rj) (2)

where T (r) is a ‘trend’ function, λj are weights (coefficients) and R(r, rj) is a
function of distance between an unsampled and a measured point. The explicit
form of R(.) depends on the choice of the additional conditions (locality, ad hoc,
geostatistical -based on variogram, physics - minimization of energy, etc.)

Voronoi polygons

First, Voronoi polygons are created from the measured data (each measured
point will be at the center of a Voronoi polygon) . Then, z-value at a point r will
be the same as the z(rj)-value at the center of the Voronoi polygon Vj within
which the point r is located. That means for our general equation, that T (r) = 0
and λ = 1, r ∈ Vj and λ = 0, r /∈ Vj leading to

z(r) = λz(rj) (3)

The resulting surface is not continuous and it includes only the measured values.

TIN-based linear interpolation

First, TIN is created from the measured data using Delaunay triangulation
(each measured point will be a triangle vertex). Then, z-value at an unsampled
point r (we denote it as point K within a triangle ABC) will be computed as a
function of the z-values at the vertices of the triangle within which the point r
is located. The function is a weighted average, where the weights are function
of areas of triangles ABK, ACK, BCK. That means for our general equation,
that T (r) = 0 and λk = pk where pk, k = 1, 2, 3 are areas of sub-triangles
ABK, ACK, BCK leading to

z(r) =
pBCKz(rA) + pACKz(rB) + pABKz(rC)

pABC
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or

z(r) =

∑3
k=1 pkz(rk)

pABC(4)

It can be also interpreted as point on a plane defined by the vertices of the
triangle ABC. The resulting surface is continuous, but its first derivatives are
not (C0).

There are many non-linear interpolation methods for TINs that lead to C1

or C2 continuous surface.

Inverse distance weighted interpolation (IDW)

The method is based on an assumption that the value at an unsampled
point can be approximated as a weighted average of values at measured points
within a certain cut-off distance, or from a given number m of the closest points
(typically 10 to 30). Weights are usually inversely proportional to a power of
distance leading to an estimator:

z(r) =

m
∑

i=1

wiz(ri) =

∑m

i=1 z(ri)/|r− ri|
p

∑m

j=1 1/|r− rj |p
(5)

where p is a parameter (typically p = 2, lower p gives smoother surface - similar
to lower tension), and |r − ri|

2 = (x − xi)
2 + (y − yi)

2 is the distance between
the unsampled location r and a given point ri.

Smoothing can be introduced by adding a parameter β to the weight term
|r− rj |

2 + β, leading to approximation function.
Note: GRASS modules use p = 2 and m = 12 as default values.

Geostatistical approach: Kriging

Kriging is based on a concept of random functions: the surface or volume
is assumed to be one realization of a random function with a certain spatial
covariance. Using the given data z(ri) and an assumption of stationarity one
can estimate a semivariogram γ(h) (Getis 1997 P3.2), defined as

γ(h) =
1

2
V ar [{z(r + h) − z(r)}] ≈

1

2Nh

Nh
∑

(ij)

[z(ri) − z(rj)]
2 (6)

which is related to the spatial covariance C(h) as

γ(h) = C(0) − C(h) (7)

where C(0) is the semivariogram value at infinity (sill). The summation in
Eq. (6) runs over the number Nh of pairs of points which are separated by the
vector h within a small tolerance ∆h (size of a histogram bin). For isotropic
data, the semivariogram can be simplified into a radial function dependent on
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|h|. The kriging literature provides a choice of functions which can be used
as theoretical semivariograms (spherical, exponential, Gaussian, Bessel, etc. )
The parameters of these functions are then optimized for the best fit of the
experimental semivariogram.

The interpolated surface is then constructed using statistical conditions
of unbiasedness and minimum variance. In its dual form (Matheron 1971,
Hutchinson and Gessler 1993) the universal kriging interpolation function can
be written as

F (r) = T (r) +

N
∑

j=1

λjC(r − rj) (5)

where T (r) represents its non-random component (drift) expressed as a linear
combination of low-order monomials. The monomial and {λj} coefficients are
found by solving a system of linear equations (Hutchinson and Gessler 1993).

Radial basis functions and splines

Variational approach to interpolation and approximation is based on the
assumption that the interpolation function should pass through (or closely to)
the data points and, at the same time, should be as smooth as possible. These
two requirements are combined into a single condition of minimizing the sum of
the deviations from the measured points and the smoothness seminorm of the
spline function:

N
∑

j=1

|zj − F (rj)|
2wj + w0I(F ) = minimum (6)

where wj , w0 are positive weights and I(F ) denotes the smoothness seminorm
(Table 1). The solution of Eq. (6) can be expressed as a sum of two components
(Talmi and Gilat 1977, Wahba 1990)

F (r) = T (r) +

N
∑

j=1

λjR(r, rj) (7)

where T (r) is a ’trend’ function and R(r, rj) is a basis function which has a form
dependent on the choice of I(F ). Bivariate smoothness seminorm with squares
of second derivatives (Table 1) leads to a thin plate spline (TPS) function,
when first derivatives are added we get thin plate spline with tension, when
all derivatives are used with decreasing weight we get completely regularized
spline or regularized spline with tension.

Thin plate spline with tension is then

F (r) = a0 +

N
∑

j=1

λj [K0(ϕr/2) + ln(ϕr/2) + C]
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where K0(.) is the Bessel? function and ϕ is tension parameter, C is constant.
Regularized spline with tension is given as

F (r) = a0 −
N

∑

j=1

λj [E1(%) + ln % + CE ]

where CE = 0.577215... is the Euler constant, E1(%) is the exponential integral
function, while the trend function is a constant and r = |r − rj |, % = (ϕr/2)2

and ϕ is a tension parameter.
The coefficients a1, {λj} are obtained by solving the following system of

linear equations:

a1 +
N

∑

j=1

λj

[

R(r[i], r[j]) + δjiw0/wj

]

= z[i] , i = 1, . . . , N

N
∑

j=1

λj = 0 .

where w0/wj are positive smoothing weights.
While not obtained by variational approach, similar in formulation and

performance are multiquadrics (Hardy 1990, Fogel 1996, Kansa and Carlson

1992, Franke 1982a, Foley 1987, Nielson 1993) with Rd(r) = (r2 + b)
1

2 or

Rd(r) = (r2 + b)−
1

2 , offering high accuracy, differentiability, d-dimensional
formulation, and, with segmentation, applicability to large data sets. Originally
ad hoc proposed multiquadrics were later put on a more solid theoretical
ground. Good performance of multiquadrics, especially in 3D, is not surprising,
considering that for d = 3 in the limit of b → 0 the basis functions (r2 + b)

1

2

and (r2 +b)−
1

2 are solutions of biharmonic and harmonic equations, respectively
(Hardy 1990).
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